
Optimizing a Decentralized Data Market
Protocol via Agent-Based Simulation

Rei Chiang1, Bharath Ramsundar2, Tarun Chitra1, and John Morrow1

1Gauntlet Networks
2Computable

Traditional markets allow for resource distribution that can in-
crease participant utility. Blockchain systems can provide ways
to guarantee that the share of that increase is distributed eq-
uitably in the market, ensuring that there are not structural
hurdles to growth. However, it is not always obvious how to
design a protocol that achieves these goals, and even less so in
permission-less systems. We analyze a decentralized data mar-
ketplace protocol that allows users to control data and capture
fair value for it. We use a platform for agent-based modeling
that allows for making statistical predictions about protocol be-
havior and market outcomes. In this paper, we describe how we
create a simulation environment that allows us to optimize fees
and other key protocol parameters in this decentralized data
market.
The architecture of the simulation platform was influenced by
the design of algorithmic trading and reinforcement learning
systems. In this framework, we define the utility or reward
function for individual agents and allow them to optimize their
behavior in a fully autonomous fashion. We then optimize the
network-level parameters by observe the emergent properties of
the agents’ behavior in aggregate. Our results include the iden-
tification of phase transitions in market outcomes, Gini coeffi-
cients of agent wealth distribution under different conditions,
and changes to pricing mechanisms that resulted in a more ef-
fective market design.

Introduction
Building decentralized systems presents new challenges that
are not often seen in traditional software development. In par-
ticular, the adage of “move fast and break things” is no longer
a viable strategy as we have seen time and time again how
even a single critical security vulnerability can be very diffi-
cult for a project to recover from. Also, the success of these
protocols depends on the design of economic incentives that
encourage balanced participation and growth between differ-
ent types of users in order to create a multi-sided market that
will ultimately accrue value. These incentive structures can
be difficult to modify once deployed since there is no central-
ized, governing authority.
We have built an agent-based simulation platform to help
developers validate their protocol designs, understand trade-
offs between different parameterizations, and ensure that ap-
plications are resilient to attacks by bad actors.
This paper presents a case study of using the simulation plat-
form to analyze a decentralized data market protocol. It high-
lights some of the lessons learned by the simulation and pro-
tocol teams from early 2019 as we worked together to design

a custom scenario to optimize parameters for the protocol’s
Reserve contract on the simulation platform. By leveraging
the tools and simulation results, the protocol team was then
able to rapidly iterate and verify a more robust design for
a couple of the incentive mechanisms in the initial imple-
mentation of the contract. Simulation analysis was always
a part of the protocol team’s plan to test and refine the token
economics, and they chose to use our simulation platform to
achieve that goal.
Note: The protocol team has just released a new whitepa-
per, which contains a number of mechanism and terminol-
ogy changes. The simulation model described here was built
on the original version. We will call out some of the differ-
ences below to avoid confusion. The updated contracts can
be found on the team’s Github.

The Decentralized Data Market Protocol
The protocol team aims to create a decentralized data mar-
ket that will incentivize the curation of high-quality datasets
at scale, while providing trust and transparency around data
privacy and usage. The protocol aims to be flexible enough
to accommodate data markets for different industry applica-
tions. For example, certain markets may have the property
that a handful of large players own the majority of the rele-
vant data, while the success of other data markets may depend
on many individual users making contributions over time.
Each dataset has a unique token associated with it to incen-
tivize curation and growth, and the participants, or “agents”
in the network are grouped into the following roles:

• Buyer - Represents the demand for the data. Pays to
query from the dataset

• Datatrust - Provides compute resources for executing
queries

• Maker - Supplies data to data markets for sale in the
form of listings

• Patron - Provides initial capital to incentivize makers
to contribute data -

The mechanism for determining whether a listing is valid is
similar to a Token-Curated Registry. The dynamics of TCR
voting can resemble other blockchain systems such as Proof-
of-Stake consensus and decentralized oracles. However, for
the rest of this post we will focus on macro features that are
more specific to the Data Market Protocol.

et al. | June 25, 2020 | 1

Fig. 1. A Bonding Curve determines prices for buying and selling a token as a
function of token supply.

Bonding Curve.

There is a bootstrapping problem since each dataset has its
own token, as these tokens will have limited liquidity and be
hard to value initially. A Bonding Curve is a contract that de-
termines token price when buying/selling and acts as an au-
tomated market-maker for the token to encourage early par-
ticipation. The diagram below illustrates how one might use
a bonding curve to issue tokens. Note that there are separate
buy/sell curves, where the sell price is lower than the buy
price, to discourage short-term price manipulation while al-
lowing for organic price discovery and liquidity since market
participants can agree to trade tokens at any price between
two curves.
The protocol uses a bonding curve for issuing tokens when
patrons deposit cryptocurrencies to the reserve, and when to-
kens are issued to makers for providing data. For the rest
of this post, we will use the term “Network token” to de-
note the tokens deposited to the reserve. In practice, Net-
work tokens could be either be a token that is native to the
Data Market protocol and shared across multiple data mar-
kets, or it could be a token that is native to the underlying
blockchain (e.g. ETH). We will show that the shape and pa-
rameterization of the bonding curves has a significant impact
on network growth.
For this analysis we use a linear bonding curve-
https://www.overleaf.com/project/5d422a29f7d162572282d9c1
defined as follows:

support_price =
conversion_rate+ conversion_slope · reserve

(1)

withdraw_price = reserve

total_supply
(2)

where support_price is the price to buy, withdraw_price is
t he price to sell, reserve is the total value of currency locked
in the bonding curve, and total_supply is the total number
of Market tokens issued by the bonding curve.

Agent Model.

Buyer - We model demand to query data in aggregate, rather
than as individual agents. This demand is realized in the form
of payment for queries during each simulation time step. The
demand is a function of the number of listings in the dataset,
with a predefined upper bound (market size) and bounded
growth rate per time step. The fee to query data (in Network
tokens) is split as follows:

• datatrust_rate_network - Percentage of query fee for
datatrust agents, in Network tokens

• reserve_fee_network - Percentage that goes to the
Market contract’s reserve, which increases both the
support and withdraw prices, in Network Tokens.

• maker_fee_network - Percentage that goes to listing
owners in Network tokens. In our model, this portion
is split equally across all listings. If the listing is no
longer owned by a Maker (see convert_listing below),
then its share goes to the Market reserve. Note: This
parameter has since been removed from the protocol,
and maker payments are now done exclusively with
Market tokens.

• maker_fee_market - Percentage that goes to listing
owners in Market tokens. This component is split
equally across all listings, and is locked up (see con-
vert_listing below) to encourage long-term maker par-
ticipation. This portion of the fee is paid by mint-
ing (creating) Market tokens at the bonding curve’s
support price, and is inflationary because it increases
the supply of Market tokens without increasing the re-
serve.

Datatrust - These agents will process queries if fee that they
receive is greater than their marginal cost of doing the com-
putation.
Maker - We assume an upper bound on the number of mak-
ers (i.e. there are only so many participants that have high
quality data to contribute to the dataset), and that the num-
ber of makers that will want to list their data is a function
of the expected utility of being listed. We also assume that
each maker can have at most one listing. Makers can take the
following actions:

• list - apply to be listed in the dataset to receive a share
of query revenue. The expected utility of being listed
can be modeled as:

E[utility] = DFi·
(maker_fee_network +maker_fee_market∗demandt)

num_listingst

+ listed_reward ·divest_pricet − listing_cost
(3)

where demandt is query revenue at time t,
num_listingst is the number of listings, DF is the

2 | et al. | Data Market Simulation

discount factor that the agent applies to future earn-
ings, listed_reward is number of market tokens re-
ceived for getting listed, divest_pricet is the sell price
given by the bonding curve, and listing_cost is the
overhead or anti-sybil cost associated with creating a
listing.

• convert_listing - A maker can transfer ownership of
the listing to the Market contract in order to unlock the
Market tokens in the listing (from listed_reward and
maker_fee_market), but forgoing future query rev-
enue. A maker will do this if the return on investment
(ROI) on the value of the locked tokens falls below the
agent’s convert_roi. The maker’s ROI can be esti-
mated by taking the value of dividends received (in-
cluding Market tokens) over an observation window,
dividing by the market value of Market tokens locked,
and converting to an annualized return. Note: This
function is no longer a part of the protocol. The current
protocol no longer requires makers to surrender own-
ership of listings to withdraw.

Patron - Can buy or sell Market tokens via the bonding
curve:

• support - Buy tokens at support_price given by
the bonding curve. A patron will buy tokens
if the risk-adjusted return on the withdraw_price
is greater than the agent’s support_roi threshold
and if the expected time to break even (since
support_pricet > withdraw_pricet) is less than the
agent’s support_breakeven_time.

• withdraw - Sell tokens at withdraw_price given by
the bonding curve. A patron will sell tokens if the risk-
adjusted return on the withdraw_price is less than the
agent’s withdraw_roi threshold.

Simulation Environment.

Our simulation platform is built around an agent-based model
where users can specify the initial conditions of the network,
including distributions of agent behaviors and agent-specific
parameters. We generally follow the Byzantine-Altruistic-
Rational (BAR) model for describing agent behavior, though
this is not a requirement. Each time step of the simulation
involves the following:

• Update environment state variables

• Introduce new agents

• Evaluate agent utility functions for each action being
considered and execute those that have highest utility

For the analysis below, we make the following assumptions:

• The maximum buyer demand (i.e. market size) is
100,000 Network tokens per year

• To improve performance, the maximum number of
makers is 25, each maker can only have one listing,
and listed_reward is 3 Network tokens

• There are 5 initial patrons that contribute 1000 Net-
work tokens each

• 80% of the makers are rational (behavior/utility de-
scribed above), and the remaining 20% are altruistic
(will not try to convert_listing)

• We run each simulation scenario for 5 years, or 1825
time-steps

Findings
Maker Compensation.

We ran the simulation over different values of
maker_fee_network and maker_fee_market to ex-
plore the impact of different fee structures on Maker
behavior. The reserve_fee is held constant, and the remain-
der of the query revenue is paid to datatrust agents. Recall
that maker_fee_market is the share of query revenue
that are paid in Market tokens and locked up to encourage
long-term participation. In the heat-map below, each square
represents an independent run of the simulation and the color
represents the percentage of the total query revenue that is
captured by the rational makers.
This is shown in Figure 2. A few observations:

• When maker_fee_network + maker_fee_market
is too high, the network fails to create value be-
cause datatrust_fee is not high enough to cover the
marginal cost of running computations.

• When maker_fee_network + maker_fee_market
is too low, the network also fails to generate significant
value because makers quickly convert their listings or
are not sufficiently incentivized to list in the first place.

• Under these parameterizations, the
maker_fee_market does not seem to be long-term
beneficial for makers. When maker_fee_network
is held constant, increasing maker_fee_market has
little effect on increasing maker utility, and utility can
actually decrease a bit in some cases.

The result that increasing maker_fee_market generally
does not benefit makers much in the long-run is definitely
a bit counter-intuitive. Upon closer inspection, we realized
that it could make sense for the following reasons:

• Once buyer demand plateaus, maker_fee_market
continues to increase the value of tokens locked up
in the listing, while revenue remains constant. This
means that the listing’s ROI continues to fall and at
some point the maker will convert the listing, trading
future revenue for liquidity.

et al. | Data Market Simulation | 3

Fig. 2. Rational Maker Utility Share Heatmap shows the percentage of the total query revenue that is captured by the rational makers

• maker_fee_market is inflationary (increases supply
of Market token but not the reserve). The percentage
of reserve ownership for each maker does not increase
much later in the simulation when makers own most of
the Market tokens (vs initial patrons).

• Most bonding curve parameterizations result in an sup-
port price that is substantially greater than the with-
draw price once the supply is large, so the conversion
is inefficient, resulting in the overall contribution of
maker_fee_market to maker ROI being small rel-
ative to maker_fee_network.

Out of these three factors, we suspected that the shape of the

bonding curve was likely to have the largest impact, so we
decided to dig a bit further.
In the original formulation of the bonding curve, the
support_price did not track the withdraw_price very
closely so we decided to update the definition of
support_price. We now define the curve as:

support_price = conversion_rate+

support_multiplier ∗ reserve

max(1, total_supply) (4)

withdraw_price = reserve

total_supply
(5)

4 | et al. | Data Market Simulation

We re-ran the above analysis and got the following results:
Now you can see in Figure 3 it appears that the
maker_fee_market parameter is actually useful! Increas-
ing maker_fee_market generally increases the utility of
the rational makers, and we see that for a given maker fee
allocation (maker_fee_network + maker_fee_market),
it is better to split the fee between network and market
components rather than paying purely in either Network or
Market tokens. Note that there is still a trade-off between
makers and patrons when paying in Market tokens since
maker_fee_market dilutes initial patrons.

Bonding Curve Analysis.

The success of the protocol depends on initial patrons con-
tributing a large amount of capital to the reserve to in-
centivize makers to list data. Patrons ultimately profit if
the withdraw_price exceeds the initial invest_price. We
ran the simulation over the new bonding curve’s parameters
conversion_rate and support_multiplier. In the heat-map
below, each square represents an independent run of the sim-
ulation and the color represents the percentage of total query
revenue that is captured by the initial patrons.
A graph of this is shown in Figure 4. A few observations:

• High support_multiplier benefits initial patrons be-
cause it limits dilution when minting Market tokens

• When conversion_rate is too high, the network does
not generate enough value within the time constraints
we set for initial patrons to break even on their original
deposit

• When conversion_rate and support_multiplier are
too low, the network fails to generate any value because
there is not enough incentive for Makers to join in the
first place

Conclusion
The simulation work with the protocol team prompted many
updates to the initial protocol design, including an improved
bonding curve and simplification of the Maker payment and
convert_listing interface. Along the way, we have also
identified key parameters to optimize, trade-offs associated
with different parameterizations, and areas where a different
mechanism altogether may achieve the desired result more
efficiently. Hopefully this was a convincing example of how
simulations can guide the protocol design process!
Within the context of a single data market, simulation allows
us to analyze mechanism design as a distributed constrained
optimization problem. More broadly, the framework can gen-
erate a reference set of parameters and initial conditions that
are catered to serving data markets with all sorts of different
properties and industry applications. The goal is to design a
system that maximizes buyer demand, while maintaining eq-
uitable incentives between datatrust providers, makers, and
patrons in a way that is statistically verifiable.

Economic incentives are of paramount importance for the
long-term security and success of blockchain applications.
Trying to reason about incentive mechanism design without
simulation is tricky as the emergent properties of a network
can be difficult to predict from local changes, and people of-
ten resort to making overly simplistic assumption about user
behavior in order to get tractable results or closed-form so-
lutions. Agent-based simulation can be a valuable tool for
helping developers to validate security assumptions, and un-
derstand how value is created for network participants over
time.

et al. | Data Market Simulation | 5

Fig. 3. Rational Maker Utility Share Heatmap shows the percentage of the total query revenue that is captured by the rational makers

6 | et al. | Data Market Simulation

Fig. 4. Patrion Utility Share Heatmap shows the percentage of the total query revenue that is captured by the initial patrons

et al. | Data Market Simulation | 7

